Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2928224.v1

ABSTRACT

There is little information on BNT162b2 vaccine-induced variant-specific immunogenicity, safety data and dynamics of breakthrough infections in pediatric populations. We addressed these questions using a prospective two dose BNT162b2(10mcg) vaccination cohort study of healthy children 5–11 years in Singapore. Follow up included blood samples at scheduled visits, daily vaccination symptom diary and confirmation of SARS-CoV-2 infection. Surrogate virus neutralization test (sVNT) and spike-specific T cell responses against SARS-CoV-2 variants were performed. The mean age of 127 participants was 8.27 years (SD: 1.95) and 51.2% were males. The median sVNT level against original variant after 1 dose and 2 dose vaccination was 61.4% and 95.1% respectively (p < 0.0001). Neutralizing antibodies against the Omicron variant was the lowest, median 22.4% (IQR:16.5 to 30.8). However, T cell IFN-γ cytokine response against Omicron variant was high and remained so about 4 months after vaccination. Fever rate increased significantly from 4% (dose 1) to 11.5% (dose 2). The risk of Omicron breakthrough infection decreased by 7.8% for every 1% increase in sVNT inhibition level measured after dose 2 vaccination. BNT162b2 vaccines were safe, induced good T cell responses but poor neutralizing antibodies against Omicron in children. Neutralizing antibody levels post-vaccination was predictive of subsequent breakthrough infection.


Subject(s)
Fever , Severe Acute Respiratory Syndrome , Breakthrough Pain , COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.21.529344

ABSTRACT

Current COVID-19 vaccines face certain limitations, which include waning immunity, immune escape by SARS-CoV-2 variants, limited CD8+ cellular response, and poor induction of mucosal immunity. Here, we engineered a Clec9A-RBD antibody construct that delivers the Receptor Binding Domain (RBD) from SARS-CoV-2 spike protein to conventional type 1 dendritic cells (cDC1). We showed that single dose immunization with Clec9A-RBD induced high RBD-specific antibody titers with a strong T-helper 1 (TH1) isotype profile and exceptional durability, whereby antibody titers were sustained for at least 21 months post-vaccination. Uniquely, affinity maturation of the antibody response was observed over time, as evidenced by enhanced neutralization potency and breadth across the sarbecovirus family. Consistently and remarkably, RBD-specific T-follicular helper cells and germinal center B cells were still detected at 12 months post-immunization. Increased antibody-dependent cell-mediated cytotoxicity (ADCC) activity of the immune sera was also measured over time with comparable efficacy against ancestral SARS-CoV-2 and variants, including Omicron. Furthermore, Clec9A-RBD immunization induced a durable poly-functional TH1-biased cellular response that was strongly cross-reactive against SARS-CoV-2 variants, including Omicron, and with robust CD8+ T cell signature. Lastly, Clec9A-RBD single dose systemic immunization primed effectively RBD-specific cellular and humoral mucosal immunity in lung. Taken together, Clec9A-RBD immunization has the potential to trigger robust and sustained, systemic and mucosal immune responses against rapidly evolving SARS-CoV2 variants.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , COVID-19
4.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1362541.v1

ABSTRACT

The SARS-CoV-2 B.1.1.529 lineage, Omicron variant, was first detected in November 2021 and carries 32 amino acid mutations in the spike protein (15 in RBD) and exhibits significant escape of neutralizing antibodies targeting the parental SARS-CoV-2 virus. Here, we performed a high-resolution multiplex (16-plex) surrogate virus neutralization assay covering all major SARS-CoV-2 variants and pre-emergent ACE2-binding sarbecoviruses against 20 different human serum panels from infected, vaccinated and hybrid immune individuals which had vaccine-breakthrough infections or infection followed by vaccination. Among all sarbecoviruses tested, we observed 1.1 to 4.7-, 2.3 to 10.3- and 0.7 to 33.3-fold reduction in neutralization activities to SARS-CoV-2 Beta, Omicron and SARS-CoV-1, respectively. Among the SARS-CoV-2 related sarbecoviruses, it is found that the genetically more distant bat RaTG13 and pangolin GX-P5L sarbecoviruses had less neutralization escape than Omicron. Our data suggest that the SARS-CoV-2 variants emerged from the changed immune landscape of human populations are more potent in escaping neutralizing antibodies, from infection or vaccination, than pre-emergent sarbecoviruses naturally evolved in animal populations with no or less immune selection pressure.

SELECTION OF CITATIONS
SEARCH DETAIL